翻訳と辞書
Words near each other
・ Remetea River (Bistra)
・ Remetea River (Olt)
・ Remetea, Bihor
・ Remetea, Harghita
・ Remeteszőlős
・ Remetinec
・ Remetinec prison
・ Remetinec Roundabout
・ Remetinec, Varaždin County
・ Remetovac
・ Remetschwil
・ Remetské Hámre
・ Remexido
・ Remexio Subdistrict
・ Remez algorithm
Remez inequality
・ Remezov
・ Remezov Chronicle
・ Remeşin
・ Remeți
・ Remeți Hydroelectric Power Station
・ Remi
・ Remi (disambiguation)
・ Remi A. Balduck
・ Remi Abiola
・ Remi Adefarasin
・ Remi Aubuchon
・ Remi Ayodele
・ Remi Babalola
・ Remi Broadway


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Remez inequality : ウィキペディア英語版
Remez inequality
In mathematics, the Remez inequality, discovered by the Soviet mathematician Evgeny Yakovlevich Remez , gives a bound on the sup norms of certain polynomials, the bound being attained by the Chebyshev polynomials.
==The inequality==
Let σ be an arbitrary fixed positive number. Define the class of polynomials π''n''(σ) to be those polynomials ''p'' of the ''n''th degree for which
:
|p(x)| \le 1

on some set of measure ≥ 2 contained in the closed interval (). Then the Remez inequality states that
:\sup_ \|p\|_\infty=\|T_n\|_\infty
where ''T''''n''(''x'') is the Chebyshev polynomial of degree ''n'', and the supremum norm is taken over the interval ().
Observe that ''T''''n'' is increasing on (+\infty ), hence
: \|T_n\|_\infty = T_n(1+\sigma).
The R.i., combined with an estimate on Chebyshev polynomials, implies the following
corollary: If ''J'' ⊂ R is a finite interval, and ''E'' ⊂ ''J'' is an arbitrary measurable set, then
: \max_ |p(x)| \leq \left( \frac \right)^n \sup_ |p(x)| \qquad\qquad(
*)
for any polynomial ''p'' of degree ''n''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Remez inequality」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.